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independent to the same extent as the

spirals used. The phase difference remains

exactly constant at all frequencies where
their axial ratios are equal to one.

1 [1. TREORY OF OPERATION

The fact that the phase of a circularly

polarized antenna is dependent upon its
rotation has been successfully used by

Brown and Dodsou in de~-eloping a novel

antenna design. This rotational phase inter-
dependence is the underlying principle in the

network under discussion.

Fig. 2 is a general representation of
the network. Energy enters the tee junction
from port 1 and splits between arms 2 and 3,

PI and Z’Z are polarizers (such as arithmetic
spirals) which convert the input to the cir-
cularly polarized mode. The polarizers trans.
fer the energy through equal lengths of’

transmission line to ports 2 and 3.

Arm Z
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Fig. 2—A three-port network with constant
L)hase difference L)ropertles.

Let us consider the ideal case where both

polarizers are identical and always provide
axial ratios equal to one. Assume that the

polarizers initially have the same rotation
with respem to an arbitrary fixed axis; i.e.,
have the same orientation in space. Since
arms 2 and 3 are identical in every way,

there will be no phase difference at their out-

puts. However, if one of the polarizers is
rotated with respect to the other, a phase

difference will appear at ports 2 and 3. This

phase difference is independent of frequency

and is numerically equal to the angle of ro-
tation. Symbolically, if the polarizers were
originally at an angle m with respect to the
.x axis and one of them, say Pz, were rotated
to an angle m, then the phase difference be-
tween ports 2 and 3 is

42, = a?– a,. (1)

Eq. ( 1 ) may be proved as follows: Con-
sider the x and y components of a circularly

polarized wave El,

()EI, =ECOS62 t–:

“u= EC”’F(’-2+)-2
where

z = the direction of propagation
~ = the velocity of the wave.

In the plane ~ = O these equations reduce

to

fi],, = n Cosd

“u= “c”+’-3 ‘Esin@’
At any time tl the angle between the re-

sultant electric vector and the x axis is

They, in turn, direct their energy clown

cylindrical wa~-egLlides whi (’h are terminated
in ttvo additional spirals. Rotai-y joints be-
fore and after one of the polarizers allow ro-
tation. Finally, the output appears at a pair
of coaxial connectors. The numerical value

of the phase difference may be simply con-
trolled by rotating the polarizer sandwiched

between the rotary ]oint:s to the desired

angle.

Ck!I = d,. (2)

Now let us consider the J and y com-

ponents of a second wave E,. Ez is identical
to E, in every way except that it is shifted

in phase by a constant amount, d. At z = O,

E,= = 13Cos (d+ @)

I?2U = E Cos(d-; +o) =Esin(7ri +@).

The angle of the electric vector at the same

time tl is, in this case,

lhg E sin (d, ++)
at = tan–l —. = tan–l —__——-—

132Z D Cos (d,++)

The fact that rU #al means that one wave is

rotated with respect to the other; i.e., one
polarizer is rotated with respect to the other.
Taking the angular difference,

Clz-al=@fl+@-cJtl

LY2 —al=+,

which proves (1).

IV. ‘rHE NETJVORK IN PRACTICE

In practice, (1) is true only for perfect

circuIar polarization. However, slight errors
due to small ellipticities should not destroy
its usefu Iness.

The fact that the outputs of arms 2 and

3 are circularly polarized may be less con-
venient than if they \vere coaxial lines. It
would be useful then to terminate arms 2 and
3 with depolarizers which reconvert the cir-

cularly polarized mode. If these depolarizers

are identical and have the same rotation,
none of the properties discussed will be af-

fected.
In any configuration such as the above at

least one serious problem is to be expected,
that of transducing from the polarizing ele-
ments to the intervening transmission line.

If spiral elements are used, the problems of
higher-order mode excitation and proximity
of the transmission line walls to the spiral
conductors will ha~,e to be sol~-ed before any

useful component can be built.

V. EFFECr OF UNEQUAL POWER SPLrr

The amplitudes at ports 2 and 3 m-e com-

pletely independent of the phase rek~tion-

ship. This is borne out by (2) and (3) which

show that the angle the electric vector makes
with the x axis is a function of frequency,
time, and initial phase only,

VI. PHASE DIFFERENCE VARIATION

Fig. 3 is a drawing of what a practical

network might look like. The coaxial tee

feeds two spirals barked by conical cavities.

Fig. 3—Example of a rmactical network.

IT1 I. CONCLUSION

A network has been described which is
theoretically frequency-independent. In
prwtice, however, se~.eral limitations crop

UP. .~mollg these are the bandwidth of the
spiral elements, the bandwidth of the wave-

guide used, and spiral ellipticity.

The most serious design problem to be

expected is the transformation from the
spiral elements to the circlllar waveguide.

It is hoped that a network will be simw
Iated in the new- future which will ade-

quately test these limitations,
BERNARD L. GEDDRY

Dorn and LIargolin, Inc.
IVestbury, L. I., N. Y.
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A Simple Formula for Calculating

Approximate Values of the First

Zeros of a Combination Bessel

Function Equation*

The solution of many problems in micro-
wave theory, particularly those relating to
waveguides ha~,ing cur\-ed boundary sur-

faces, is dependent upon a determination of

the zeros of the Bessel function equatiun

.7p(x) A7z(kt) – J,,(k.E)Nr(x) = o (1)

where -7F and NP are respectively the IBessel
functions of the first ancl second kinds, of
order p. In a majority of the cases arising in
waveguide theory, the parameters k and p

+ Received September 28, 1962.
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are real and positive, but may be fractional

or integral.

While tables of the zeros of (1) do exist

for certain ranges of p and k (see [1], [2],

[3]) these are in general rather limited in

extent, particularly for large and fractional

values of @ and k. Hence, for the solution of

problems involving non-tabulated values of
the parameters it is necessary either to inter-
polate existing tabulations, or to solve (1)
numerically. In many such instances much
of the labor may be avoided by the use of a

simple relation, derived by the author in the
course of developing an approximate theory

of propagation in rectangular waveguide

wound into a helical form [for the exact

treatment of this problem see [4], which

also contains extensive tables of the zeros of

(1 )]. On the basis of the assumptions

a) that only the TE1O mode is propa-

gated,
b) that electrical lengths may be meas-

ured along the axis of the waveguide,
and

c) that the pitch of the helix is negligible
(see [-t ] for justification of this),

the following formula for the roots of ( 1) is

derived:

The values XOobtained from (2) are very
close approximations to the first zeros of ( 1).
The closeness of the approximation depends

upon the particular values of k and @ under
consideration, and for a given case may be
estimated by reference to the accompanying
Fig. 1. If the point determined by (k, p) lies
within the central cross-hatched region, the

resultant value of XOwill in general be within
~ 1 per cent of the exact value, though if it

lies within the region bounded by the dashed

curve the lower limit may drop to — 1.5 per

cent. If the point lies anywhere within the
diagonally-hatched region the value of w

calculated from (2) will be within ~ 5 per
cent of the exact \,alue.

For the design engineer, accuracies with-
in i- 1 per cent will often be adequate, and
in such cases the use of (2) obviates the
need for interpolation of tables or other
tedious calculation. In other cases, where
high accuracy is required, the use of (2) will

quicly provide an excellent “first guess”
which will permit a rapidly cou~,ergent nu-

merical solution of ( 1). It may further be

noted that, given any two of the three

parameters j, k, XO, the third may readily
be calculated from (2) and the accuracy of
the result determined from Fig. 1.
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Maximum Efficiency of a Two

Arm Waveguide Junction*

It is well-lmown that the efficiency- of a
two-arm waveguide junction (2-port) de-
pends upon the reflection coefficient rL of
the load with which one of the arms is
terminated. The efficiency is known to vary
between the limits O and v,. (maximum ef-
ficiency) as rL assumes all possible \-alues
with in the unit circle. However, there seems
to be no published analysis from which one

* Rece,ved October 11, 1962.

January

can determine the particular rL giving maxi-

mum efficiency if the characteristics of the

waveguide junction are known.

It can be shownl that the reflection co-
efficient r~ to give maximum efficiency can

be calculated from

F.i.f = S2Z*

(1 –S,,r,w)*s,J12*s2, + Is,,s,l l’r~
+ —. —– , (1)

(1 – Is,] I‘) 0 –s,,r~r) –s11*s1,s21rJf

where the asterisk * denotes the complex
conjugate, the S-terms denote the scattering

coefficients of the waveguide junction, and

the load of reflection coefficient r~ ter-
minates arm 2. The solution of ( 1) for r~
may be written

r..=;[l * /’- (a;!)’].
Where

A = S22 + S11*(S12S21 – S1l.S22), (2)

and

B = 1 – IS1112+ [s22/2– I S12S21-S11S2212

in some cases, it is necessary to choose the

algebraic sign in (2) to yield a \,alue of r~l
within the unit circle.

One r~ has been determined, the maxi-
mum efficiency qM can be determined from
the equation

Z“l
‘“ = Z ls,,lz(l- I ml’) , (3)

.—-— ——————___

I 1–sz,rjl I‘– j Lslzszl–s,,szz) rk +s,l ]’

where ZOI and ZOZ are the characteristic im-

pedances of arms 1 and 2, respectively, of the
2-arm waveguide junction.

It can be further shown2 that the quan-

tity AI, the intrinsic attenuation (equiva-
lent to the intrinsic insertion loss of Tomi-

yasu3) is given by-

AZ = 1010g104 .
?’U

(4)

ROBERT W. BEATTY
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x A convenient way to show this, is to postulate
lossless tuners attached to both arms of the wave.
guide junction and adjusted for maximum power to
the load. Under this condition, a conjugate match is
obtained at each terminal surface in each waveguide
lead. For simplicity, one may assume a non-reflecting
generator and load without significant loss in gener.
ality. A straightforward analysis then leads to the
stated result.

3 This is shown in a paper entitled “Intrinsic At.
tenuation” which is in preparation by the correspond.
ellt.

2 Kiyo Tomiyasu, “Intrinsic Insertion Loss of a
Mismatched Mmmwave h,etwork, n IRE TRAPJS. ON
MICROWAVE THEORY AND TECHNIQUES, vol. MTT.3,
pp 40–44; January 1955.


