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independent to the same extent as the
spirals used. The phase difference remains
exactly constant at all frequencies where
their axial ratios are equal to one.

I[1. THEORY OF OPERATION

The fact that the phase of a circularly
polarized antenna is dependent upon its
rotation has been successfully used by
Brown and Dodson in developing a novel
antenna design. This rotational phase inter-
dependence is the underlying principle in the
network under discussion.

Fig. 2 is a general representation of
the network. Energy enters the tee junction
from port 1 and splits between arms 2 and 3.
Py and P, are polarizers (such as arithmetic
spirals) which convert the input to the cir-
cularly polarized mode. The polarizers trans-
fer the energy through equal lengths of
transmission line to ports 2 and 3.

Arm 2
L
Port 2
Port 1
o
(Input)
La
Port 3
Arm 3

Fig. 2—A three-port network with constant
phase difference properties.

Let us consider the ideal case where both
polarizers are identical and always provide
axial ratios equal to one. Assume that the
polarizers initially have the same rotation
with respect to an arbitrary fixed axis; 7.e.,
have the same orientation in space. Since
arms 2 and 3 are identical in every way,
there will be no phase difference at their out-
puts. However, if one of the polarizers is
rotated with respect to the other, a phase
difference will appear at ports 2 and 3. This
phase difference is independent of frequency
and is numerically equal to the angle of ro-
tation. Symbolically, if the polarizers were
originally at an angle oy with respect to the
x axis and one of them, say P, were rotated
to an angle ap, then the phase difference be-
tween ports 2 and 3 is

boz = a2 — ai. )]

Eq. (1) may be proved as follows: Con-
sider the x and y components of a circularly
polarized wave Ej,

Ei, = Ecosw (z‘ - ;)

q

Iny = Ecos [w (t — i) — L:I
] 2

where

z=the direction of propagation
v=the velocity of the wave.

Correspondence

In the plane =0 these equations reduce
to
Fyy = IL cos wi

™
By, = Lcos (wt - 7) = [ sinwl.

At any time 4 the angle between the re-
sultant electric vector and the x axis is

_ Ely _
ap = tan”l— = tan"! ————
1 E cos wi
a1 = wl. (2)
Now let us consider the x and y com-
ponents of a second wave E,. Es is identical

to E; in every way except that it is shifted
in phase by a constant amount, ¢. At =0,

Loy = I cos (wi + ¢)

s
Esyy = Ecos (wl———z——{— ¢~> = [ sin (7t + ¢).

The angle of the electric vector at the same
time 4 is, in this case,
Ezy E sin (wh + ¢)
a2 = tan™!— = tan~! —
Es; L cos (wh + ¢)
@y = wh + ¢. 3)

The fact that as % means that one wave is
rotated with respect to the other; <.e., one
polarizer is rotated with respect to the other.
Taking the angular difference,

= wf, + ¢ — wiy
= ¢,

Qg — Q1
Qs T o

which proves (1).

IV. THE NETWORK IN PRACTICE

In practice, (1) is true only for perfect
circular polarization. However, slight errors
due to small ellipticities should not destroy
its usefulness.

The fact that the outputs of arms 2 and
3 are circularly polarized may be less con-
venient than if they were coaxial lines. It
would be useful then to terminate arms 2 and
3 with depolarizers which reconvert the cir-
cularly polarized mode. I{ these depolarizers
are identical and have the same rotation,
none of the properties discussed will be af-
fected.

In any configuration such as the above at
least one serious problem is to be expected,
that of transducing from the polarizing ele-
ments to the intervening transmission line.
If spiral elements are used, the problems of
higher-order mode excitation and proximity
of the transmission line walls to the spiral
conductors will have to be solved before any
useful component can be built.

V. EFrEcT oF UNEQUAL POWER SPLIT

The amplitudes at ports 2 and 3 are com-
pletely independent of the phase relation-
ship. This is borne out by (2) and (3) which
show that the angle the electric vector makes
with the x axis is a function of frequency,
time, and initial phase only.

VI. PaHASE DIFFERENCE VARIATION

Fig. 3 is a drawing of what a practical
network might look like. The coaxial tee
feeds two spirals backed by conical cavities.
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They, in turn, direct their energy down
cylindrical waveguides which are terminated
in two additional spirals. Rotary joints be-
fore and after one of the polarizers allow ro-
tation. Finally, the output appears at a pair
of coaxial connectors. The numerical value
of the phase difference may be simply con-
trolled by rotating the polarizer sandwiched
between the rotary joints to the desired
angle.

7

/

Rotary Joints

Fig. 3-——Example of a practical network.

VII. CoNcLusiON

A network has been described which is
theoretically  frequency-independent. In
practice, however, several limitations crop
up. Among these are the bandwidth of the
spiral eleruents, the bandwidth of the wave-
guide used, and spiral ellipticity.

The most serious design problem to be
expected is the transformation from the
spiral elements to the circular waveguide.

It is hoped that a network will be simu-
lated in the uear future which will ade-
quately test these limitations.
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A Simple Formula for Calculating
Approximate Values of the First
Zeros of a Combination Bessel
Function Equation*

The solution of many problems in micro-
wave theory, particularly those relating to
waveguides having curved boundary sur-

faces, is dependent upon a determination of
the zeros of the Bessel function equation

To(®)Nplks) — Ty N,(x) =0 (1)

where J, and N, are respectively the Bessel
functions of the first and second kinds, of
order p. In a majority of the cases arising in
waveguide theory, the parameters & and p

+ Received September 28, 1962,
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are real and positive, but may be fractional
or integral.

While tables of the zeros of (1) do exist
for certain ranges of p and & (see [1], [2],
[3]) these are in general rather limited in
extent, particularly for large and fractional
values of p and k. Hence, for the solution of
problems involving non-tabulated values of
the parameters it is necessary either to inter-
polate existing tabulations, or to solve (1)
numerically. In many such instances much
of the labor may be avoided by the use of a
simple relation, derived by the author in the
course of developing an approximate theory
of propagation in rectangular waveguide
wound into a helical form [for the exact
treatment of this problem see [4], which
also contains extensive tables of the zeros of
(1)]. On the basis of the assumptions

a) that only the TE; mode is propa-
gated,

b) that electrical lengths may be meas-
ured along the axis of the waveguide,
and

c) that the pitch of the helix is negligible
(see [4] for justification of this),

the following formula for the roots of (1) is
derived:

N LR S
W G @

The values x, obtained from (2) are very
close approximations to the first zeros of (1).
The closeness of the approximation depends
upon the particular values of & and p under
consideration, and for a given case may be
estimated by reference to the accompanying
Fig. 1. If the point determined by (&, p) lies
within the central cross-hatched region, the
resultant value of xy will in general be within
+1 per cent of the exact value, though if it
lies within the region bounded by the dashed
curve the lower limit may drop to —1.5 per
cent. If the point lies anywhere within the
diagonally-hatched region the value of x
calculated from (2) will be within £35 per
cent of the exact value.

For the design engineer, accuracies with-
in &1 per cent will often be adequate, and
in such cases the use of (2) obviates the
need for interpolation of tables or other
tedious calculation. In other cases, where
high accuracy is required, the use of (2) will
quicly provide an excellent “first guess”
which will permit a rapidly convergent nu-
merical solution of (1). It may further be
noted that, given any two of the three
parameters p, kB, xo, the third may readily
be calculated from (2) and the accuracy of
the result determined from Fig. 1.
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Maximum Efficiency of a Two
Arm Waveguide Junction*

It is well-known that the efficiency of a
two-arm waveguide junction (2-port) de-
pends upon the reflection coefficient I'r, of
the load with which one of the arms is
terminated. The efficiency is known to vary
between the limits 0 and 7, (maximum ef-
ficiency) as I'z assumes all possible values
within the unit circle. However, there seems
to be no published analysis from which one

* Recerved October 11, 1962,
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can determine the particular I'z giving maxi-
mum efficiency if the characteristics of the
waveguide junction are known.

It can be shown! that the reflection co-
efficient Ty to give maximum efficiency can
be calculated from

Tar = Sog*
. (1—S2aTa0) *S11515%Sm + | S12S21 |20
(1— | Su[ D1 —S2Ta) —S11*S1eSaTar

where the asterisk * denotes the complex
conjugate, the S-terms denote the scattering
coefficients of the waveguide junction, and
the load of reflection coefficient T'zr ter-
minates arm 2. The solution of (1) for I'y
may be written

I ey

Where
A = Sss 4 S1:*(S12521 — S11592), (2)

and
B=1—|Sul*+ [Snlt— [ S12821 = SuSe |2

in some cases, it is necessary to choose the
algebraic sign in (2) to yield a value of I'ss
within the unit circle.

One I'sr has been determined, the maxi-
mum efficiency 73 can be determined from
the equation

Zu
ZOZ

n =

| Sar|2(1— | Tor[®)
| 1=SaaTar |2— | (S1oS2—S1182) Tas+Suy |2

,» 3

where Zo and Zy are the characteristic im-
pedances of arms 1 and 2, respectively, of the
2-arm waveguide junction.

It can be further shown? that the quan-
tity Ay, the intrinsic attenuation (equiva-
lent to the intrinsic insertion loss of Tomi-
yasu®) is given by

1
A7 = 10 logyo — - 4)
nM
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L A convenient way to show this, is to postulate
lossless tuners attached to both arms of the wave-
guide junction and adjusted for maximum power to
the load. Under this condition, a conjugate match is
obtained at each terminal surface in each waveguide
lead. For simplicity, one may assume a non-reflecting
generator and load without significant loss in gener-
ality. A straightforward analysis then leads to the
stated result.

2 This is shown in a paper entitled “Intrinsic At
tenuation” which is in preparation by the correspond-
ent.

3 Kiyvo Tomiyasu, “Intrinsic Insertion Loss of a
Mismatched Microwave Network,” IRE TRANS, ON
MicROWAVE THEORY AND TECHNIQUES, vol, MTT-3,
pp 40-44; January 195S.



